A foreground-immune CMB-cluster lensing estimator

Author:

Levy Kevin,Raghunathan Srinivasan,Basu Kaustuv

Abstract

Abstract Galaxy clusters induce a distinct dipole pattern in the cosmic microwave back-ground (CMB) through the effect of gravitational lensing. Extracting this lensing signal will enable us to constrain cluster masses, even for high redshift clusters (z ≳ 1) that are expected to be detected by future CMB surveys. However, cluster-correlated foreground signals, like the kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) signals, present a challenge when extracting the lensing signal from CMB temperature data. While CMB polarization-based lensing reconstruction is one way to mitigate these foreground biases, the sensitivity from CMB temperature-based reconstruction is expected to be similar to or higher than polarization for future surveys. In this work, we extend the cluster lensing estimator developed in [1] to CMB temperature and test its robustness against systematic biases from foreground signals. We find that the kSZ signal only acts as an additional source of variance and provide a simple stacking-based approach to mitigate the bias from the tSZ signal. Additionally, we study the bias induced due to uncertainties in the cluster positions and show that they can be easily mitigated. The estimated signal-to-noise ratio (SNR) of this estimator is comparable to other standard lensing estimators such as the maximum likelihood (MLE) and quadratic (QE) estimators. We predict the cluster mass uncertainties from CMB temperature data for current and future cluster samples to be: 6.6% for SPT-3G with 7,000 clusters, 4.1% for SO and 3.9% for SO + FYST with 25,000 clusters, and 1.8% for CMB-S4 with 100,000 clusters.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing;Journal of Cosmology and Astroparticle Physics;2024-07-01

2. Cluster profiles from beyond-the-QE CMB lensing mass maps;Journal of Cosmology and Astroparticle Physics;2024-01-01

3. Unveiling neutrino halos with CMB lensing;Physical Review D;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3