Numerical simulations of stochastic inflation using importance sampling

Author:

Jackson Joseph H.P.,Assadullahi Hooshyar,Koyama Kazuya,Vennin Vincent,Wands David

Abstract

Abstract We show how importance sampling can be used to reconstruct the statistics of rare cosmological fluctuations in stochastic inflation. We have developed a publicly available package, PyFPT,[https://github.com/Jacks0nJ/PyFPT.] that solves the first-passage time problem of generic one-dimensional Langevin processes. In the stochastic-δ N formalism, these are related to the curvature perturbation at the end of inflation. We apply this method to quadratic inflation, where the existence of semi-analytical results allows us to benchmark our approach. We find excellent agreement within the estimated statistical error, both in the drift- and diffusion-dominated regimes. The computation takes at most a few hours on a single CPU, and can reach probability values corresponding to less than one Hubble patch per observable universe at the end of inflation. With direct sampling, this would take more than the age of the universe to simulate even with the best current supercomputers. As an application, we study how the presence of large-field boundaries might affect the tail of the probability distribution. We also find that non-perturbative deviations from Gaussianity are not always of the simple exponential type.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clustering of primordial black holes from quantum diffusion during inflation;Journal of Cosmology and Astroparticle Physics;2024-08-01

2. Why Does Inflation Look Single Field to Us?;Physical Review Letters;2024-06-21

3. Stochastic inflation in general relativity;Physical Review D;2024-06-17

4. Finding origins of CMB anomalies in the inflationary quantum fluctuations;Journal of Cosmology and Astroparticle Physics;2024-06-01

5. Spectators no more! How even unimportant fields can ruin your Primordial Black Hole model;Journal of Cosmology and Astroparticle Physics;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3