Stochastic inflation in general relativity

Author:

Launay Yoann L.1ORCID,Rigopoulos Gerasimos I.2,Shellard E. Paul S.1

Affiliation:

1. University of Cambridge

2. Newcastle University

Abstract

We provide a formulation of stochastic inflation in full general relativity that goes beyond the slow-roll and separate universe approximations. We show how gauge-invariant Langevin source terms can be obtained for the complete set of Einstein equations in their Arnowitt-Deser-Misner formulation by providing a recipe for coarse-graining the spacetime in any small gauge. These stochastic source terms are defined in terms of the only dynamical scalar degree of freedom in single-field inflation and all depend simply on the first two time derivatives of the coarse-graining window function, on the gauge-invariant mode functions that satisfy the Mukhanov-Sasaki evolution equation, and on the slow-roll parameters. It is shown that this reasoning can also be applied to include gravitons as stochastic sources, thus enabling the study of all relevant degrees of freedom of general relativity for inflation. We validate the efficacy of these Langevin dynamics directly using an example in uniform field gauge, obtaining the stochastic e-fold number in the long wavelength limit without the need for a first-passage-time analysis. As well as investigating the most commonly used gauges in cosmological perturbation theory, we also derive stochastic source terms for the coarse-grained Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s equations, which enables a well-posed implementation for 3+1 numerical relativity simulations. Published by the American Physical Society 2024

Funder

Science and Technology Facilities Council

Kavli Institute for Cosmology, Cambridge

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3