Fitting covariance matrix models to simulations

Author:

Fumagalli Alessandra,Biagetti Matteo,Saro Alex,Sefusatti Emiliano,Slosar Anže,Monaco Pierluigi,Veropalumbo Alfonso

Abstract

Abstract Data analysis in cosmology requires reliable covariance matrices. Covariance matrices derived from numerical simulations often require a very large number of realizations to be accurate. When a theoretical model for the covariance matrix exists, the parameters of the model can often be fit with many fewer simulations. We write a likelihood-based method for performing such a fit. We demonstrate how a model covariance matrix can be tested by examining the appropriate χ 2 distributions from simulations. We show that if model covariance has amplitude freedom, the expectation value of second moment of χ 2 distribution with a wrong covariance matrix will always be larger than one using the true covariance matrix. By combining these steps together, we provide a way of producing reliable covariances without ever requiring running a large number of simulations. We demonstrate our method on two examples. First, we measure the two-point correlation function of halos from a large set of 10000 mock halo catalogs. We build a model covariance with 2 free parameters, which we fit using our procedure. The resulting best-fit model covariance obtained from just 100 simulation realizations proves to be as reliable as the numerical covariance matrix built from the full 10000 set. We also test our method on a setup where the covariance matrix is large by measuring the halo bispectrum for thousands of triangles for the same set of mocks. We build a block diagonal model covariance with 2 free parameters as an improvement over the diagonal Gaussian covariance. Our model covariance passes the χ 2 test only partially in this case, signaling that the model is insufficient even using free parameters, but significantly improves over the Gaussian one.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3