Euclid preparation
-
Published:2024-03
Issue:
Volume:683
Page:A253
-
ISSN:0004-6361
-
Container-title:Astronomy & Astrophysics
-
language:
-
Short-container-title:A&A
Author:
, Fumagalli A.ORCID, Saro A., Borgani S.ORCID, Castro T., Costanzi M., Monaco P., Munari E., Sefusatti E., Le Brun A. M. C., Aghanim N., Auricchio N., Baldi M., Bodendorf C., Bonino D., Branchini E., Brescia M., Brinchmann J., Camera S., Capobianco V., Carbone C., Carretero J., Castander F. J., Castellano M., Cavuoti S., Cledassou R., Congedo G., Conselice C. J., Conversi L., Copin Y., Corcione L., Courbin F., Cropper M., Da Silva A., Degaudenzi H., Dubath F., Dupac X., Dusini S., Farrens S., Ferriol S., Frailis M., Franceschi E., Franzetti P., Galeotta S., Garilli B., Gillard W., Gillis B., Giocoli C., Grazian A., Grupp F., Haugan S. V. H., Holmes W., Hornstrup A., Hudelot P., Jahnke K., Kümmel M., Kermiche S., Kiessling A., Kilbinger M., Kitching T., Kunz M., Kurki-Suonio H., Ligori S., Lilje P. B., Lloro I., Mansutti O., Marggraf O., Markovic K., Marulli F., Massey R., Maurogordato S., Medinaceli E., Mei S., Meneghetti M., Meylan G., Moresco M., Moscardini L., Niemi S.-M., Padilla C., Paltani S., Pasian F., Pedersen K., Percival W. J., Pettorino V., Pires S., Polenta G., Poncet M., Raison F., Rebolo-Lopez R., Renzi A., Rhodes J., Riccio G., Romelli E., Roncarelli M., Saglia R., Sapone D., Sartoris B., Schneider P., Secroun A., Seidel G., Sirignano C., Sirri G., Stanco L., Tallada-Crespí P., Taylor A. N., Tereno I., Toledo-Moreo R., Torradeflot F., Tutusaus I., Valenziano L., Vassallo T., Wang Y., Weller J., Zacchei A., Zamorani G., Zoubian J., Andreon S., Bardelli S., Boucaud A., Bozzo E., Colodro-Conde C., Di Ferdinando D., Fabbian G., Farina M., Lindholm V., Maino D., Mauri N., Neissner C., Scottez V., Zucca E., Baccigalupi C., Balaguera-Antolínez A., Ballardini M., Bernardeau F., Biviano A., Blanchard A., Borlaff A. S., Burigana C., Cabanac R., Carvalho C. S., Casas S., Castignani G., Chambers K., Cooray A. R., Coupon J., Courtois H. M., Davini S., de la Torre S., Desprez G., Dole H., Escartin J. A., Escoffier S., Ferreira P. G., Finelli F., Garcia-Bellido J., George K., Gozaliasl G., Hildebrandt H., Hook I., Jimenez Muñoz A., Joachimi B., Kansal V., Keihänen E., Kirkpatrick C. C., Loureiro A., Magliocchetti M., Maoli R., Marcin S., Martinelli M., Martinet N., Matthew S., Maturi M., Maurin L., Metcalf R. B., Morgante G., Nadathur S., Nucita A. A., Patrizii L., Pollack J. E., Popa V., Porciani C., Potter D., Pourtsidou A., Pöntinen M., Sánchez A. G., Sakr Z., Schirmer M., Sereno M., Spurio Mancini A., Stadel J., Steinwagner J., Valieri C., Valiviita J., Veropalumbo A., Viel M.
Abstract
Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters.
Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to accurately describe the clustering covariance. Then, we used this model to quantify the likelihood-analysis response to variations in the covariance, and we investigated the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters.
Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the two-point correlation function of galaxy clusters. By introducing a few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with an accuracy of 10%, with differences of about 5% on the figure of merit of the cosmological parameters Ωm and σ8. We also find that the covariance contains additional valuable information that is not present in the mean value, and the constraining power of cluster clustering can improve significantly when its cosmology dependence is accounted for. Finally, we find that the cosmological figure of merit can be further improved when mass binning is taken into account. Our results have significant implications for the derivation of cosmological constraints from the two-point clustering statistics of the Euclid survey of galaxy clusters.
Reference88 articles.
1. Albrecht A., Bernstein G., Cahn R., et al. 2006, arXiv e-prints [arXiv:astro-ph/0609591] 2. Anderson T. 2003, An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics (Wiley) 3. Constraints on the dark energy equation of state from the imprint of baryons on the power spectrum of clusters 4. Equivalence principle and the baryon acoustic peak 5. The variance of correlation function estimates
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|