Euclid preparation

Author:

,Fumagalli A.ORCID,Saro A.,Borgani S.ORCID,Castro T.,Costanzi M.,Monaco P.,Munari E.,Sefusatti E.,Le Brun A. M. C.,Aghanim N.,Auricchio N.,Baldi M.,Bodendorf C.,Bonino D.,Branchini E.,Brescia M.,Brinchmann J.,Camera S.,Capobianco V.,Carbone C.,Carretero J.,Castander F. J.,Castellano M.,Cavuoti S.,Cledassou R.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Cropper M.,Da Silva A.,Degaudenzi H.,Dubath F.,Dupac X.,Dusini S.,Farrens S.,Ferriol S.,Frailis M.,Franceschi E.,Franzetti P.,Galeotta S.,Garilli B.,Gillard W.,Gillis B.,Giocoli C.,Grazian A.,Grupp F.,Haugan S. V. H.,Holmes W.,Hornstrup A.,Hudelot P.,Jahnke K.,Kümmel M.,Kermiche S.,Kiessling A.,Kilbinger M.,Kitching T.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Mansutti O.,Marggraf O.,Markovic K.,Marulli F.,Massey R.,Maurogordato S.,Medinaceli E.,Mei S.,Meneghetti M.,Meylan G.,Moresco M.,Moscardini L.,Niemi S.-M.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Percival W. J.,Pettorino V.,Pires S.,Polenta G.,Poncet M.,Raison F.,Rebolo-Lopez R.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Roncarelli M.,Saglia R.,Sapone D.,Sartoris B.,Schneider P.,Secroun A.,Seidel G.,Sirignano C.,Sirri G.,Stanco L.,Tallada-Crespí P.,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Tutusaus I.,Valenziano L.,Vassallo T.,Wang Y.,Weller J.,Zacchei A.,Zamorani G.,Zoubian J.,Andreon S.,Bardelli S.,Boucaud A.,Bozzo E.,Colodro-Conde C.,Di Ferdinando D.,Fabbian G.,Farina M.,Lindholm V.,Maino D.,Mauri N.,Neissner C.,Scottez V.,Zucca E.,Baccigalupi C.,Balaguera-Antolínez A.,Ballardini M.,Bernardeau F.,Biviano A.,Blanchard A.,Borlaff A. S.,Burigana C.,Cabanac R.,Carvalho C. S.,Casas S.,Castignani G.,Chambers K.,Cooray A. R.,Coupon J.,Courtois H. M.,Davini S.,de la Torre S.,Desprez G.,Dole H.,Escartin J. A.,Escoffier S.,Ferreira P. G.,Finelli F.,Garcia-Bellido J.,George K.,Gozaliasl G.,Hildebrandt H.,Hook I.,Jimenez Muñoz A.,Joachimi B.,Kansal V.,Keihänen E.,Kirkpatrick C. C.,Loureiro A.,Magliocchetti M.,Maoli R.,Marcin S.,Martinelli M.,Martinet N.,Matthew S.,Maturi M.,Maurin L.,Metcalf R. B.,Morgante G.,Nadathur S.,Nucita A. A.,Patrizii L.,Pollack J. E.,Popa V.,Porciani C.,Potter D.,Pourtsidou A.,Pöntinen M.,Sánchez A. G.,Sakr Z.,Schirmer M.,Sereno M.,Spurio Mancini A.,Stadel J.,Steinwagner J.,Valieri C.,Valiviita J.,Veropalumbo A.,Viel M.

Abstract

Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to accurately describe the clustering covariance. Then, we used this model to quantify the likelihood-analysis response to variations in the covariance, and we investigated the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the two-point correlation function of galaxy clusters. By introducing a few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with an accuracy of 10%, with differences of about 5% on the figure of merit of the cosmological parameters Ωm and σ8. We also find that the covariance contains additional valuable information that is not present in the mean value, and the constraining power of cluster clustering can improve significantly when its cosmology dependence is accounted for. Finally, we find that the cosmological figure of merit can be further improved when mass binning is taken into account. Our results have significant implications for the derivation of cosmological constraints from the two-point clustering statistics of the Euclid survey of galaxy clusters.

Publisher

EDP Sciences

Reference88 articles.

1. Albrecht A., Bernstein G., Cahn R., et al. 2006, arXiv e-prints [arXiv:astro-ph/0609591]

2. Anderson T. 2003, An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics (Wiley)

3. Constraints on the dark energy equation of state from the imprint of baryons on the power spectrum of clusters

4. Equivalence principle and the baryon acoustic peak

5. The variance of correlation function estimates

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3