Advanced laser-driven ion sources and their applications in materials and nuclear science

Author:

Passoni MORCID,Arioli F M,Cialfi L,Dellasega DORCID,Fedeli LORCID,Formenti A,Giovannelli A C,Maffini AORCID,Mirani FORCID,Pazzaglia AORCID,Tentori A,Vavassori D,Zavelani-Rossi MORCID,Russo VORCID

Abstract

Abstract The investigation of superintense laser-driven ion sources and their potential applications offers unique opportunities for multidisciplinary research. Plasma physics can be combined with materials and nuclear science, radiation detection and advanced laser technology, leading to novel research challenges of great fundamental and applicative interest. In this paper we present interesting and comprehensive results on nanostructured low density (near-critical) foam targets for TW and PW-class lasers, obtained in the framework of the European Research Council ENSURE project. Numerical simulations and experimental activities carried out at 100 s TW and PW-class laser facilities have shown that targets consisting of a solid foil coated with a nanostructured low-density (near-critical) foam can lead to an enhancement of the ion acceleration process. This stimulated a thorough numerical investigation of superintense laser-interaction with nanostructured near-critical plasmas. Thanks to a deep understanding of the foam growth process via the pulsed laser deposition technique and to the complementary capabilities of high-power impulse magnetron sputtering, advanced multi-layer targets based on near-critical films with carefully controlled properties (e.g. density gradients over few microns length scales) can now be manufactured, with applications outreaching the field of laser-driven ion acceleration. Additionally, comprehensive numerical and theoretical work has allowed the design of dedicated experiments and a realistic table-top apparatus for laser-driven materials irradiation, ion beam analysis and neutron generation, that exploit a double-layer target to reduce the requirements for the laser system.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3