Versatile Synthesis of Nanofoams through Femtosecond Pulsed Laser Deposition

Author:

Orecchia Davide1ORCID,Maffini Alessandro1ORCID,Zavelani‐Rossi Margherita12ORCID,Passoni Matteo1ORCID

Affiliation:

1. Energy Department Politecnico di Milano via G. Ponzio 34/3 20133 Milano Italy

2. Istituto di Fotonica e Nanotecnologie Consiglio Nazionale delle Ricerche piazza Leonardo da Vinci 32 20133 Milano Italy

Abstract

Nanofoam materials are gaining increasing interest in the scientific community, thanks to their unique properties such as ultralow density, complex nano‐ and microstructure, and high surface area. Nanofoams are attractive for multiple applications, ranging from advanced catalysis and energy storage to nuclear fusion and particle acceleration. The main issues hindering the widespread use of nanofoams are related to the choice of synthesis technique, highly dependent on the desired elemental composition and leading to a limited control over the main material properties. Herein, femtosecond pulsed laser deposition is proposed as a universal tool for the synthesis of nanofoams with tailored characteristics. Nanofoams made by elements with significantly different properties—namely, boron, silicon, copper, tungsten, and gold—can be produced by suitably tuning the deposition parameters. The effect of the background pressure is studied in detail, in relation to the morphological features and density of the resulting nanofoams and nanostructured films. This, together with the analysis of the specific features shown by nanofoams made of different elements, offers fresh insights into the aggregation process and its relation to the corresponding nanofoam properties down to the nanoscale, opening new perspectives toward the application of nanofoam‐based materials.

Funder

EUROfusion

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3