Machine learning techniques for sequential learning engineering design optimisation

Author:

Humphrey L RORCID,Dubas A J,Fletcher L C,Davis A

Abstract

Abstract When designing a fusion power plant, many first-of-a-kind components are required. This presents a large potential design space across as many dimensions as the component’s parameters. In addition, multiphysics, multiscale, high-fidelity simulations are required to reliably capture a component’s performance under given boundary conditions. Even with high performance computing (HPC) resources, it is not possible to fully explore a component’s design space. Thus, effective interpolation between data points via machine learning (ML) techniques is essential. With sequential learning engineering optimisation, ML techniques inform the selection of simulation parameters which give the highest expected improvement for the model: balancing exploitation of the current best design with exploration of uncertain areas in the design space. In this paper, the application of an ML-driven design of experiment procedure for the sequential learning engineering design optimisation of a fusion component is shown. A parameterised divertor monoblock is taken as a typical example of a fusion component requiring HPC simulation to model. The component’s geometry is then optimised using Bayesian optimisation, seeking the design which minimises the stress experienced by the component under operational conditions.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3