Scalable multi-physics for fusion reactors with AURORA

Author:

Brooks HORCID,Davis A

Abstract

Abstract To support the design of fusion reactors for energy production, there is an urgent need to develop multi-physics software tools capable of modelling critical tokamak components as a single cohesive whole. Although some loosely-coupled physics tools do exist, these lack fidelity and will fundamentally fail to capture any closed-loop feedback effects between separate physics modules. To address this need, we introduce a new open-source code: AURORA: A Unified Resource for OpenMC (fusion) Reactor Applications. Anticipating the need for high-fidelity simulation of complex physics and geometry mandates the need to target high performance computing from the outset. AURORA has been built upon two demonstrably scalable open-source codes: MOOSE for the provision of finite element analysis and OpenMC for Monte Carlo neutron transport. In this application, the heat deposited by neutrons is calculated by OpenMC and tallied upon an unstructured mesh, providing a source term for transient heat conduction and thermal expansion. MOOSE calculates the corresponding change in temperature and density on the same mesh, whereafter local temperature and density regions are defined via binning in these variables. Finally, these regions are updated within OpenMC as new materials having modified nuclear cross sections. The procedure is subsequently iterated until a desired stopping condition is reached. We present some qualitative results as a proof-of-concept demonstration of AURORA. We further demonstrate that there is no measurable degradation in shared-memory performance arising from wrapping OpenMC in a MOOSE application. While AURORA should provide utility as a standalone tool for coupled thermo-mechanical and neutronics analyses, we view it as a first step towards our ultimate goal of having a single suite capable of capturing non-trivial couplings between the many disciplines—encompassing in addition fluid dynamics, electromagnetism, materials science and chemistry—involved in the simulation of a tokamak.

Funder

STEP

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Reference42 articles.

1. Towards fusion energy: the UK fusion strategy,2021

2. First results from UK experiment point to a solution to one of fusion’s hottest problems,2021

3. European research roadmap to the realisation of fusion energy,2018

4. Testing advanced divertor concepts for fusion power plants using a small high heat flux facility;Hancock,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital: accelerating the pathway;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26

2. Managing the complexity of plasma physics in control systems engineering;Fusion Engineering and Design;2024-06

3. Developing performance portable plasma edge simulations: A survey;Computer Physics Communications;2024-05

4. FESTIM: An open-source code for hydrogen transport simulations;International Journal of Hydrogen Energy;2024-04

5. 3D high-fidelity automated neutronics guided optimization of fusion blanket designs;Fusion Engineering and Design;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3