Drift effects on W7-X divertor heat and particle fluxes

Author:

Hammond K CORCID,Gao YORCID,Jakubowski MORCID,Killer CORCID,Niemann HORCID,Rudischhauser LORCID,Ali A,Andreeva TORCID,Blackwell B DORCID,Brunner K JORCID,Cannas BORCID,Drewelow P,Drews PORCID,Endler MORCID,Feng Y,Geiger JORCID,Grulke O,Knauer JORCID,Klose S,Lazerson SORCID,Otte MORCID,Pisano FORCID,Neuner U,Sitjes A Puig,Rahbarnia K,Schilling JORCID,Thomsen H,Wurden G AORCID

Abstract

Abstract Classical particle drifts are known to have substantial impacts on fluxes of particles and heat through the edge plasmas in both tokamaks and stellarators. Here we present results from the first dedicated investigation of drift effects in the W7-X stellarator. By comparing similar plasma discharges conducted with a forward- and reverse-directed magnetic field, the impacts of drifts could be isolated through the observation of up-down asymmetries in flux profiles on the divertor targets. In low-density plasmas, the radial locations of the strike lines (i.e. peaks in the target heat flux profiles) exhibited discrepancies of up to 3 cm that reversed upon magnetic field reversal. In addition, asymmetric heat loads were observed in regions of the target that are shadowed by other targets from parallel flux from the core plasma. A comparison of these asymmetric features with the footprints of key topological regions of the edge magnetic field on the divertor suggests that the main driver of the asymmetries at low density is poloidal E × B drift due to radial electric fields in the scrape-off layer and private flux region. In higher-density plasmas, upper and lower targets collected non-ambipolar currents with opposite signs that also inverted upon field reversal. Overall, in these experiments, almost all up-down asymmetry could be attributed to the field reversal and, therefore, field-dependent drifts.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3