Impurity leakage mechanisms in the Wendelstein 7-X island divertor under friction-dominated conditions

Author:

Winters V.R.ORCID,Reimold F.ORCID,Feng Y.ORCID,Perseo V.ORCID,Beurskens M.ORCID,Bozhenkov S.ORCID,Brunner K.J.ORCID,Fuchert G.ORCID,Koenig R.ORCID,Knauer J.ORCID,Krychowiak M.,Pasch E.,Scott E.ORCID,Zhang D.ORCID,

Abstract

Abstract The EMC3-Eirene code was used to study the main impurity leakage mechanism for the island divertor in the standard magnetic field configuration. It was found that under experimentally accessible plasma scenarios in the last experimental campaign, the majority of the island scrape-off layer was friction-force dominated. The impurity force balance was only thermal force dominated for upstream locations closed to the last closed flux surface, beyond the island X-point. No impurity neutral ionization was found in this location and hence the parallel impurity transport provides excellent impurity retention. It was found that impurities approach the confinement region nonetheless via perpendicular transport across the island O-point near the parallel flow stagnation region. This finding points out the specific role of the parallel flow stagnation region in providing lower parallel convective transport and long impurity residence times, which makes non-parallel transport channels more important or even the dominant driver of impurity leakage. In line with the relevance of the particle build-up in the flow stagnation region, different retention behavior as a function of density is seen for various species, which is shown to be due to ionization length changes as the plasma background density is increased.

Funder

EUROfusion

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3