Atomic permutationally invariant polynomials for fitting molecular force fields

Author:

Allen Alice E AORCID,Dusson GenevièveORCID,Ortner ChristophORCID,Csányi GáborORCID

Abstract

Abstract We introduce and explore an approach for constructing force fields for small molecules, which combines intuitive low body order empirical force field terms with the concepts of data driven statistical fits of recent machine learned potentials. We bring these two key ideas together to bridge the gap between established empirical force fields that have a high degree of transferability on the one hand, and the machine learned potentials that are systematically improvable and can converge to very high accuracy, on the other. Our framework extends the atomic permutationally invariant polynomials (aPIP) developed for elemental materials in (2019 Mach. Learn.: Sci. Technol. 1 015004) to molecular systems. The body order decomposition allows us to keep the dimensionality of each term low, while the use of an iterative fitting scheme as well as regularisation procedures improve the extrapolation outside the training set. We investigate aPIP force fields with up to generalised 4-body terms, and examine the performance on a set of small organic molecules. We achieve a high level of accuracy when fitting individual molecules, comparable to those of the many-body machine learned force fields. Fitted to a combined training set of short linear alkanes, the accuracy of the aPIP force field still significantly exceeds what can be expected from classical empirical force fields, while retaining reasonable transferability to both configurations far from the training set and to new molecules.

Funder

Leverhulme Trust

Investissements d’Avenir

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3