Uncovering interpretable relationships in high-dimensional scientific data through function preserving projections

Author:

Liu ShusenORCID,Anirudh Rushil,Thiagarajan Jayaraman J,Bremer Peer-Timo

Abstract

Abstract In many fields of science and engineering, we frequently encounter experiments or simulations datasets that describe the behavior of complex systems and uncovering human interpretable patterns between their inputs and outputs via exploratory data analysis is essential for building intuition and facilitating discovery. Often, we resort to 2D embeddings for examining these high-dimensional relationships (e.g. dimensionality reduction). However, most existing embedding methods treat the dimensions as coordinates for samples in a high-dimensional space, which fail to capture the potential functional relationships, and the few methods that do take function into consideration either only focus on linear patterns or produce non-linear embeddings that are hard to interpret. To address these challenges, we proposed function preserving projections (FPP), which construct 2D linear embeddings optimized to reveal interpretable yet potentially non-linear patterns between the domain and the range of a high-dimensional function. The intuition here is that humans are good at understanding potentially non-linear patterns in 2D but unable to interpret non-linear mapping from high-dimensional space to 2D. Therefore, we should restrict the projection to linear but not the pattern we are seeking. Using FPP on real-world datasets, one can obtain fundamentally new insights about high-dimensional relationships in extremely large datasets that could not be processed with existing dimension reduction methods.

Funder

Department of Energy

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference27 articles.

1. Tensorflow: Large-scale machine learning on heterogeneous distributed systems;Abadi,2016

2. Scatterplot matrix techniques for large n;Carr;J. Am. Stat. Assoc.,1987

3. t-visne: Interactive assessment and interpretation of t-SNE projections;Chatzimparmpas,2020

4. The partial least squares approach to structural equation modeling;Chin;Modern Methods Business Res.,1998

5. A cluster separation measure;Davies,1979

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3