Machine learning–driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins

Author:

Ingólfsson Helgi I.1,Neale Chris2,Carpenter Timothy S.1ORCID,Shrestha Rebika3,López Cesar A.2ORCID,Tran Timothy H.3ORCID,Oppelstrup Tomas1,Bhatia Harsh4,Stanton Liam G.5,Zhang Xiaohua1,Sundram Shiv1,Di Natale Francesco4,Agarwal Animesh2,Dharuman Gautham1,Kokkila Schumacher Sara I. L.6,Turbyville Thomas3,Gulten Gulcin3,Van Que N.3ORCID,Goswami Debanjan3,Jean-Francois Frantz3,Agamasu Constance3,Chen De3,Hettige Jeevapani J.2,Travers Timothy2,Sarkar Sumantra7,Surh Michael P.1,Yang Yue1,Moody Adam4,Liu Shusen4,Van Essen Brian C.4,Voter Arthur F.8,Ramanathan Arvind9ORCID,Hengartner Nicolas W.2ORCID,Simanshu Dhirendra K.3ORCID,Stephen Andrew G.3ORCID,Bremer Peer-Timo4ORCID,Gnanakaran S.2ORCID,Glosli James N.1,Lightstone Felice C.1,McCormick Frank310ORCID,Nissley Dwight V.3ORCID,Streitz Frederick H.1

Affiliation:

1. Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;

2. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545;

3. RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;

4. Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;

5. Department of Mathematics and Statistics, San José State University, San José, CA 95192;

6. Data Centric Systems, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598;

7. Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545;

8. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545;

9. Computing, Environment & Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439;

10. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115

Abstract

Significance Here we present an unprecedented multiscale simulation platform that enables modeling, hypothesis generation, and discovery across biologically relevant length and time scales to predict mechanisms that can be tested experimentally. We demonstrate that our predictive simulation-experimental validation loop generates accurate insights into RAS-membrane biology. Evaluating over 100,000 correlated simulations, we show that RAS–lipid interactions are dynamic and evolving, resulting in: 1) a reordering and selection of lipid domains in realistic eight-lipid bilayers, 2) clustering of RAS into multimers correlating with specific lipid fingerprints, 3) changes in the orientation of the RAS G-domain impacting its ability to interact with effectors, and 4) demonstration that RAS–RAS G-domain interfaces are nonspecific in these putative signaling domains.

Funder

U.S. Department of Energy

HHS | NIH | National Cancer Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference74 articles.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins;Expert Opinion on Drug Discovery;2024-08-06

2. Functional and structural insights into RAS effector proteins;Molecular Cell;2024-08

3. Modeling membranes in situ;Current Opinion in Structural Biology;2024-08

4. Assessing the Martini 3 protein model: A review of its path and potential;Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics;2024-07

5. Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity;Annual Review of Physical Chemistry;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3