Abstract
AbstractThe phenomenal success of physics in explaining nature and engineering machines is predicated on low dimensional deterministic models that accurately describe a wide range of natural phenomena. Physics provides computational rules that govern physical systems and the interactions of the constituents therein. Led by deep neural networks, artificial intelligence (AI) has introduced an alternate data-driven computational framework, with astonishing performance in domains that do not lend themselves to deterministic models such as image classification and speech recognition. These gains, however, come at the expense of predictions that are inconsistent with the physical world as well as computational complexity, with the latter placing AI on a collision course with the expected end of the semiconductor scaling known as Moore’s Law. This paper argues how an emerging symbiosis of physics and AI can overcome such formidable challenges, thereby not only extending AI’s spectacular rise but also transforming the direction of engineering and physical science.
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献