Interpolation of environmental data using deep learning and model inference

Author:

Ibebuchi Chibuike ChiedozieORCID,Abu Itohan-Osa

Abstract

Abstract The temporal resolution of environmental data sets plays a major role in the granularity of the information that can be derived from the data. In most cases, it is required that different data sets have a common temporal resolution to enable their consistent evaluations and applications in making informed decisions. This study leverages deep learning with long short-term memory (LSTM) neural networks and model inference to enhance the temporal resolution of climate datasets, specifically temperature, and precipitation, from daily to sub-daily scales. We trained our model to learn the relationship between daily and sub-daily data, subsequently applying this knowledge to increase the resolution of a separate dataset with a coarser (daily) temporal resolution. Our findings reveal a high degree of accuracy for temperature predictions, evidenced by a correlation of 0.99 and a mean absolute error of 0.21 °C, between the actual and predicted sub-daily values. In contrast, the approach was less effective for precipitation, achieving an explained variance of only 37%, compared to 98% for temperature. Further, besides the sub-daily interpolation of the climate data sets, we adapted our approach to increase the resolution of the Normalized difference vegetation index of Landsat (from 16 d to 5 d interval) using the LSTM model pre-trained from the Sentinel 2 Normalized difference vegetation index—that exists at a relatively higher temporal resolution. The explained variance between the predicted Landsat and Sentinel 2 data is 70% with a mean absolute error of 0.03. These results suggest that our method is particularly suitable for environmental datasets with less pronounced short-term variability, offering a promising tool for improving the resolution and utility of the data.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3