Importance nested sampling with normalising flows

Author:

Williams Michael JORCID,Veitch JohnORCID,Messenger ChrisORCID

Abstract

Abstract We present an improved version of the nested sampling algorithm nessai in which the core algorithm is modified to use importance weights. In the modified algorithm, samples are drawn from a mixture of normalising flows and the requirement for samples to be independently and identically distributed (i.i.d.) according to the prior is relaxed. Furthermore, it allows for samples to be added in any order, independently of a likelihood constraint, and for the evidence to be updated with batches of samples. We call the modified algorithm i-nessai. We first validate i-nessai using analytic likelihoods with known Bayesian evidences and show that the evidence estimates are unbiased in up to 32 dimensions. We compare i-nessai to standard nessai for the analytic likelihoods and the Rosenbrock likelihood, the results show that i-nessai is consistent with nessai whilst producing more precise evidence estimates. We then test i-nessai on 64 simulated gravitational-wave signals from binary black hole coalescence and show that it produces unbiased estimates of the parameters. We compare our results to those obtained using standard nessai and dynesty and find that i-nessai requires 2.68 and 13.3 times fewer likelihood evaluations to converge, respectively. We also test i-nessai of an 80 s simulated binary neutron star signal using a reduced-order-quadrature basis and find that, on average, it converges in 24 min, whilst only requiring 1.01 × 10 6 likelihood evaluations compared to 1.42 × 10 6 for nessai and 4.30 × 10 7 for dynesty. These results demonstrate that i-nessai is consistent with nessai and dynesty whilst also being more efficient.

Funder

National Science Foundation

European Cooperation in Science and Technology

Science and Technology Research Council

Science and Technology Facilities Council

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference80 articles.

1. Nested Sampling;Skilling,2004

2. Nested sampling for general Bayesian computation;Skilling;Bayesian Anal.,2006

3. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library;Veitch;Phys. Rev. D,2015

4. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy;Ashton;Astrophys. J. Suppl.,2019

5. DIAMONDS: a new Bayesian nested sampling tool;Corsaro,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3