JefiAtten: an attention-based neural network model for solving Maxwell’s equations with charge and current sources

Author:

Sun Ming-Yan,Xu Peng,Zhang Jun-JieORCID,Du Tai-Jiao,Wang Jian-GuoORCID

Abstract

Abstract We present JefiAtten, a novel neural network model employing the attention mechanism to solve Maxwell’s equations efficiently. JefiAtten uses self-attention and cross-attention modules to understand the interplay between charge density, current density, and electromagnetic fields. Our results indicate that JefiAtten can generalize well to a range of scenarios, maintaining accuracy across various spatial distribution and handling amplitude variations. The model showcases an improvement in computation speed after training, compared to traditional integral methods. The adaptability of the model suggests potential for broader applications in computational physics, with further refinements to enhance its predictive capabilities and computational efficiency. Our work is a testament to the efficacy of integrating attention mechanisms with numerical simulations, marking a step forward in the quest for data-driven solutions to physical phenomena.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3