Building high accuracy emulators for scientific simulations with deep neural architecture search

Author:

Kasim M FORCID,Watson-Parris D,Deaconu L,Oliver S,Hatfield P,Froula D H,Gregori G,Jarvis M,Khatiwala S,Korenaga J,Topp-Mugglestone J,Viezzer EORCID,Vinko S M

Abstract

Abstract Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully emulates simulations in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.

Funder

European Research Council

EPSRC

European Union

Natural Environment Research Council

AWE plc

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A physically consistent AI-based SPH emulator for computational fluid dynamics;Nonlinear Engineering;2024-01-01

2. Framework for automatic production simulation tuning with machine learning;Procedia CIRP;2024

3. Hyperparameter Tuning of Neural Network for High-Dimensional Problems in the Case of Helmholtz Equation;Moscow University Physics Bulletin;2023-12

4. Machine Learning and Physics: A Survey of Integrated Models;ACM Computing Surveys;2023-11-25

5. High Throughput Training of Deep Surrogates from Large Ensemble Runs;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3