A physically consistent AI-based SPH emulator for computational fluid dynamics

Author:

Amato Eleonora12,Zago Vito1,Del Negro Ciro1

Affiliation:

1. Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia , Catania , Italy

2. Dipartimento di Matematica e Informatica, Università di Palermo , Palermo , Italy

Abstract

Abstract The integration of artificial intelligence (AI) into computational fluid dynamics (CFD) has significantly expanded the scope of fluid modeling, allowing enhanced analysis capabilities and improved simulation performance. While Eulerian methods already benefit extensively from AI, notably in reliable weather prediction, the application of AI to Lagrangian methods remains less consolidated. Smoothed particle hydrodynamics (SPH) is a Lagrangian mesh-less numerical method for CFD with well-established advantages for the simulation of highly dynamic free-surface flows. Here, we explore an application of AI to SPH simulations, utilizing an artificial neural network (ANN) to estimate hydrodynamic forces between particle pairs, learning from SPH-simulated results. A model of this nature, which emulates the mathematical representation of physics, is termed an emulator. We examine the physical significance of the emulator, presenting its applications in benchmark tests, assessing its faithfulness to traditional SPH simulations, and highlighting its ability to generalize and simulate test cases with varying levels of complexity beyond its training data.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3