Machine learning-based signal quality assessment for cardiac volume monitoring in electrical impedance tomography

Author:

Min Hyun ChangORCID,Jun Jang Tae,Nam Jeongchan,Kwon Hyeuknam,Jeon Kiwan,Lee KyounghunORCID

Abstract

Abstract Owing to recent advances in thoracic electrical impedance tomography (EIT), a patient’s hemodynamic function can be noninvasively and continuously estimated in real-time by surveilling a cardiac volume signal (CVS) associated with stroke volume and cardiac output. In clinical applications, however, a CVS is often of low quality, mainly because of the patient’s deliberate movements or inevitable motions during clinical interventions. This study aims to develop a signal quality indexing method that assesses the influence of motion artifacts on transient CVSs. The assessment is performed on each cardiac cycle to take advantage of the periodicity and regularity in cardiac volume changes. Time intervals are identified using the synchronized electrocardiography system. We apply divergent machine-learning methods, which can be sorted into discriminative-model and manifold-learning approaches. The use of machine-learning could be suitable for our real-time monitoring application that requires fast inference and automation as well as high accuracy. In the clinical environment, the proposed method can be utilized to provide immediate warnings so that clinicians can minimize confusion regarding patients’ conditions, reduce clinical resource utilization, and improve the confidence level of the monitoring system. Numerous experiments using actual EIT data validate the capability of CVSs degraded by motion artifacts to be accurately and automatically assessed in real-time by machine learning. The best model achieved an accuracy of 0.95, positive and negative predictive values of 0.96 and 0.86, sensitivity of 0.98, specificity of 0.77, and AUC of 0.96.

Funder

Samsung Science and Technology Foundation

Ministry of Trade, Industry and Energy (MOTIE) in Korea

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference61 articles.

1. Impedance imaging of lung ventilation: do we need to account for chest expansion?;Adler;IEEE Trans. Biomed. Eng.,1996

2. Understanding diagnostic tests 3: receiver operating characteristic curves;Akobeng;Acta Paediatr.,2007

3. Variational autoencoder based anomaly detection using reconstruction probability;An,2015

4. Electrical impedance tomography: tissue properties to image measures;Adler;IEEE Trans. Biomed. Eng.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3