Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax

Author:

Ivanenko Mikhail1ORCID,Smolik Waldemar T.1ORCID,Wanta Damian1ORCID,Midura Mateusz1ORCID,Wróblewski Przemysław1ORCID,Hou Xiaohan2,Yan Xiaoheng2ORCID

Affiliation:

1. Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

2. Faculty of Electrical and Control Engineering, Liaoning Technical University, No. 188 Longwan Street, Huludao 125105, China

Abstract

Electrical impedance tomography (EIT) is a non-invasive technique for visualizing the internal structure of a human body. Capacitively coupled electrical impedance tomography (CCEIT) is a new contactless EIT technique that can potentially be used as a wearable device. Recent studies have shown that a machine learning-based approach is very promising for EIT image reconstruction. Most of the studies concern models containing up to 22 electrodes and focus on using different artificial neural network models, from simple shallow networks to complex convolutional networks. However, the use of convolutional networks in image reconstruction with a higher number of electrodes requires further investigation. In this work, two different architectures of artificial networks were used for CCEIT image reconstruction: a fully connected deep neural network and a conditional generative adversarial network (cGAN). The training dataset was generated by the numerical simulation of a thorax phantom with healthy and illness-affected lungs. Three kinds of illnesses, pneumothorax, pleural effusion, and hydropneumothorax, were modeled using the electrical properties of the tissues. The thorax phantom included the heart, aorta, spine, and lungs. The sensor with 32 area electrodes was used in the numerical model. The ECTsim custom-designed toolbox for Matlab was used to solve the forward problem and measurement simulation. Two artificial neural networks were trained with supervision for image reconstruction. Reconstruction quality was compared between those networks and one-step algebraic reconstruction methods such as linear back projection and pseudoinverse with Tikhonov regularization. This evaluation was based on pixel-to-pixel metrics such as root-mean-square error, structural similarity index, 2D correlation coefficient, and peak signal-to-noise ratio. Additionally, the diagnostic value measured by the ROC AUC metric was used to assess the image quality. The results showed that obtaining information about regional lung function (regions affected by pneumothorax or pleural effusion) is possible using image reconstruction based on supervised learning and deep neural networks in EIT. The results obtained using cGAN are strongly better than those obtained using a fully connected network, especially in the case of noisy measurement data. However, diagnostic value estimation showed that even algebraic methods allow us to obtain satisfactory results.

Funder

YOUNG PW grant under the Initiative of Excellence—Research University program by the Ministry of Education and Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3