Investigation of inverse design of multilayer thin-films with conditional invertible neural networks

Author:

Luce AlexanderORCID,Mahdavi AliORCID,Wankerl HeribertORCID,Marquardt FlorianORCID

Abstract

Abstract In this work, we apply conditional invertible neural networks (cINN) to inversely design multilayer thin-films given an optical target in order to overcome limitations of state-of-the-art optimization approaches. Usually, state-of-the-art algorithms depend on a set of carefully chosen initial thin-film parameters or employ neural networks which must be retrained for every new application. We aim to overcome those limitations by training the cINN to learn the loss landscape of all thin-film configurations within a training dataset. We show that cINNs can generate a stochastic ensemble of proposals for thin-film configurations that are reasonably close to the desired target depending only on random variables. By refining the proposed configurations further by a local optimization, we show that the generated thin-films reach the target with significantly greater precision than comparable state-of-the-art approaches. Furthermore, we tested the generative capabilities on samples which are outside of the training data distribution and found that the cINN was able to predict thin-films for out-of-distribution targets, too. The results suggest that in order to improve the generative design of thin-films, it is instructive to use established and new machine learning methods in conjunction in order to obtain the most favorable results.

Funder

ams OSRAM Group

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3