Autonomous data extraction from peer reviewed literature for training machine learning models of oxidation potentials

Author:

Lee SiwooORCID,Heinen StefanORCID,Khan Danish,Anatole von Lilienfeld OORCID

Abstract

Abstract We present an automated data-collection pipeline involving a convolutional neural network and a large language model to extract user-specified tabular data from peer-reviewed literature. The pipeline is applied to 74 reports published between 1957 and 2014 with experimentally-measured oxidation potentials for 592 organic molecules (−0.75 to 3.58 V). After data curation (solvents, reference electrodes, and missed data points), we trained multiple supervised machine learning (ML) models reaching prediction errors similar to experimental uncertainty (∼0.2 V). For experimental measurements of identical molecules reported in multiple studies, we identified the most likely value based on out-of-sample ML predictions. Using the trained ML models, we then estimated oxidation potentials of ∼132k small organic molecules from the QM9 (quantum mechanics data for organic molecules with up to 9 atoms not counting hydrogens) data set, with predicted values spanning 0.21–3.46 V. Analysis of the QM9 predictions in terms of plausible descriptor-property trends suggests that aliphaticity increases the oxidation potential of an organic molecule on average from ∼1.5 V to ∼2 V, while an increase in number of heavy atoms lowers it systematically. The pipeline introduced offers significant reductions in human labor otherwise required for conventional manual data collection of experimental results, and exemplifies how to accelerate scientific research through automation.

Funder

Ed Clark Chair of Advanced Materials

Canada First Research Excellence Fund

University of Toronto

Canada CIFAR AI Chair

European Research Council

Acceleration Consortium

European Union

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models for Inorganic Synthesis Predictions;Journal of the American Chemical Society;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3