Abstract
Abstract
The boron-10 based multi-grid detector is being developed as an alternative to helium-3 based neutron detectors. At the European Spallation Source, the detector will be used for time-of-flight neutron spectroscopy at cold to thermal neutron energies. The objective of this work is to investigate fine time- and energy-resolved effects of the Multi-Grid detector, down to a few µeV, while comparing it to the performance of a typical helium-3 tube. Furthermore, it is to characterize differences between the detector technologies in terms of internal scattering, as well as the time reconstruction of ∼ µs short neutron pulses. The data were taken at the Helmholtz Zentrum Berlin, where the Multi-Grid detector and a helium-3 tube were installed at the ESS test beamline, V20. Using a Fermi-chopper, the neutron beam of the reactor was chopped into a few tens of µs wide pulses before reaching the detector, located a few tens of cm downstream. The data of the measurements show an agreement between the derived and calculated neutron detection efficiency curve. The data also provide fine details on the effect of internal scattering, and how it can be reduced. For the first time, the chopper resolution was comparable to the timing resolution of the Multi-Grid detector. This allowed a detailed study of time- and energy resolved effects, as well as a comparison with a typical helium-3 tube.
Funder
Horizon 2020 Framework Programme
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Reference49 articles.
1. The european spallation source design;Garoby;Phys. Scr.,2017
2. European Spallation Source 04;Peggs,2013
3. Search for alternative techniques to helium-3 based detectors for neutron scattering applications;Zeitelhack;Neutron News,2012
4. 10B4C Multi-Grid as an alternative to 3He for large area neutron detectors;Correa,2012
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献