Quantify pixel-level detection of dam surface crack using deep learning

Author:

Chen BoORCID,Zhang HuaORCID,Li YonglongORCID,Wang ShuangORCID,Zhou Huaifang,Lin HaitaoORCID

Abstract

Abstract An increasing number of detection methods based on computer vision are applied to detect cracks in water conservancy infrastructure. However, most studies directly use existing feature extraction networks to extract crack information, which are proposed for open-source datasets. As the crack distribution and pixel features are different from these data, the extracted crack information is incomplete. In this paper, a deep learning-based network for dam surface crack detection is proposed, which mainly addresses the semantic segmentation of cracks on the dam surface. Particularly, we design a shallow encoding network to extract features of crack images based on the statistical analysis of cracks. Further, to enhance the relevance of contextual information, we introduce an attention module into the decoding network. During the training, we use the sum of cross-entropy and Dice loss as the loss function to overcome data imbalance. The quantitative crack information is extracted by the imaging principle after using morphological algorithms to extract the morphological features of the predicted result. We built a manual annotation dataset containing 1577 images to verify the effectiveness of the proposed method. This method achieves state-of-the-art performance on our dataset. Specifically, the precision, recall, Intersection of Union (IoU), F1_measure, and accuracy are 90.81%, 81.54%, 75.23%, 85.93%, 99.76%, respectively, and the quantification error of cracks is less than 4%.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Research and Development Program of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3