Distance-guided domain adaptation for bearing fault diagnosis under variable operating conditions

Author:

Hei Zhendong,Shi Qiang,Fan Xuefeng,Qian Feifei,Kumar Anil,Zhong Meipeng,Zhou YuqingORCID

Abstract

Abstract Transfer learning (TL) has demonstrated effective application in diagnosing bearing faults under varying operating conditions. The current TL methods achieve domain alignment by minimizing the variation in the marginal distribution of data between the source and target domains in the feature space. However, this approach yields incomplete similarity, leading to domain shift and a decrease in diagnostic performance. To overcome this problem, this paper proposes a new distance-guided domain adaptation method that consists of two modules: deep domain adaptive correlation alignment (Deep CORAL) combined with joint maximum mean discrepancy (JMMD) for guided domain adaptation. Deep CORAL employs nonlinear transformations to synchronize second-order statistical correlations across source and target domains, thus ensuring feature-level alignment between these domains. JMMD is utilized to align the joint distribution of input features and output labels within the activation layer in the deep network, thereby bolstering domain alignment. Building on this, we propose a network structure that merges ResNet and bidirectional long short-term memory, powered by wavelet kernels, serving as a feature extractor. This structure is designed to learn domain-invariant features and incorporates attention mechanisms to amplify important information while diminishing the impact of redundant data. An analysis of bearing experiments is used to demonstrate the effectiveness of this method, and the proposed method significantly outperforms several popular methods in diagnostic performance.

Funder

Zhejiang Provincial Natural Science Foundation of China

General Project of the Department of Education of Zhejiang Province

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3