Semi-Supervised Multiscale Permutation Entropy-Enhanced Contrastive Learning for Fault Diagnosis of Rotating Machinery
Author:
Affiliation:
1. College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing, China
2. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Wenzhou Key Innovation Project for Science and Technology of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10203049.pdf?arnumber=10203049
Reference28 articles.
1. A novel tool condition monitoring based on Gramian angular field and comparative learning
2. Development of LDA Based Indicator for the Detection of Unbalance and Misalignment at Different Shaft Speeds
3. Dimensionality Reduction by Learning an Invariant Mapping
4. Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
5. A new tool wear condition monitoring method based on deep learning under small samples
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data;Reliability Engineering & System Safety;2024-11
2. Research on ACMD-ICYCBD method for rolling bearing fault feature extraction;Journal of Vibroengineering;2024-09-08
3. Multiscale Conditional Adversarial Networks based domain-adaptive method for rotating machinery fault diagnosis under variable working conditions;ISA Transactions;2024-09
4. Semi-supervised few-shot fault diagnosis driven by multi-head dynamic graph attention network under speed fluctuations;Digital Signal Processing;2024-08
5. Data-Driven Rotary Machine Fault Diagnosis Using Multisensor Vibration Data with Bandpass Filtering and Convolutional Neural Network for Signal-to-Image Recognition;Electronics;2024-07-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3