Uncertainty evaluation in atomic force microscopy measurement of nanoparticles based on statistical mixed model in a Bayesian framework

Author:

Pétry JORCID,Boeck B De,Sebaïhi N,Coenegrachts M,Caebergs TORCID,Dobre MORCID

Abstract

Abstract A major bottleneck in nanoparticle sizing is the lack of data comparability between techniques and between laboratories. However, this can be overcome by making the measurements traceable to the SI together with realistic uncertainty evaluation. In the present work, a novel approach is proposed to perform measurement uncertainty evaluation in a Bayesian framework by statistically modeling appropriately selected measurement data when no comprehensive physical model is available. The method is applied to the dimensional measurement of nanoparticles by atomic force microscopy (AFM) measurement and the calibration is performed by a multiple points calibration curve. Nevertheless, the proposed method can be applied to other microscopy techniques. The experimental data used to construct the statistical model are collected so that the influence of relevant measurement parameters can be assessed. An optimized experiment is designed under the intermediate precision conditions in order to limit the number of measurements to perform. Among the different influencing parameters, it is found that the AFM operator and image analyst do not significantly affect the measurement variability while the tip tapping force, the probe nature and the tip scan speed do. The particular case of gold nanoparticle of nominal diameter 30 nm is treated as an example of the method.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3