Vehicle rollover warning system based on TTR method with inertial measurement

Author:

Wang MengmengORCID,Liu JinhaoORCID,Zhang Hongye,Gan Linjie,Xu XiangboORCID,He Jiaorong,Chen Shao

Abstract

Abstract This paper presents a theoretical and experimental study conducted on the rollover warning of wheeled off-road operating vehicles. The time to rollover warning algorithm was studied with real-time vehicle roll angle and roll angle velocity as the input variables, and lateral load transfer ratio was used as the rollover determination index. Subsequently, a vehicle dynamics model was built using CarSim software, and a warning algorithm was established in the MATLAB/Simulink environment. The rollover joint simulation in CarSim and MATLAB/Simulink was conducted under typical working conditions. Finally, combined with inertial measurements, a rollover warning system was independently developed. In addition, the rollover warning system was installed on a light forest firefighting truck to verify the feasibility of the system via a real vehicle experiment, and the law of vehicle rollover motion was also studied. The serpentine experiment and steady-state rotation experiment were conducted. The experimental results showed that at identical front-wheel steering angles, the roll angle and lateral acceleration increased with an increase in the vehicle speed. Furthermore, for identical vehicle speeds, the roll angle and lateral acceleration of the vehicle increased with an increase in the front-wheel steering angle. The dangerous vehicle speed was 50 km h−1 in the serpentine condition and 40 km h−1 in the steady-state rotation condition. The risk trend and alarm signal obtained by the rollover warning system were consistent with the actual situation. Thus, this can assist drivers in judging the rollover risk and effectively improve the active safety of special vehicles. Furthermore, it also provides a reference for further research on active rollover control technology of special vehicles.

Funder

National Nature Science Foundation of China

China Postdoctoral Science Foundation

Editage

Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3