Abstract
Abstract
This paper presents a theoretical and experimental study conducted on the rollover warning of wheeled off-road operating vehicles. The time to rollover warning algorithm was studied with real-time vehicle roll angle and roll angle velocity as the input variables, and lateral load transfer ratio was used as the rollover determination index. Subsequently, a vehicle dynamics model was built using CarSim software, and a warning algorithm was established in the MATLAB/Simulink environment. The rollover joint simulation in CarSim and MATLAB/Simulink was conducted under typical working conditions. Finally, combined with inertial measurements, a rollover warning system was independently developed. In addition, the rollover warning system was installed on a light forest firefighting truck to verify the feasibility of the system via a real vehicle experiment, and the law of vehicle rollover motion was also studied. The serpentine experiment and steady-state rotation experiment were conducted. The experimental results showed that at identical front-wheel steering angles, the roll angle and lateral acceleration increased with an increase in the vehicle speed. Furthermore, for identical vehicle speeds, the roll angle and lateral acceleration of the vehicle increased with an increase in the front-wheel steering angle. The dangerous vehicle speed was 50 km h−1 in the serpentine condition and 40 km h−1 in the steady-state rotation condition. The risk trend and alarm signal obtained by the rollover warning system were consistent with the actual situation. Thus, this can assist drivers in judging the rollover risk and effectively improve the active safety of special vehicles. Furthermore, it also provides a reference for further research on active rollover control technology of special vehicles.
Funder
National Nature Science Foundation of China
China Postdoctoral Science Foundation
Editage
Research Funds for the Central Universities
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献