EIT probe based intraoperative tissue inspection for minimally invasive surgery

Author:

Guo JingORCID,Zhuang Baiyang,Li Renkai,Lin ZexuanORCID,Cheng ZhuoqiORCID,Lou HaifangORCID

Abstract

Abstract Electrical impedance tomography (EIT) has become an integral component in the repertoire of medical imaging techniques, particularly due to its non-invasive nature and real-time imaging capabilities. Despite its potential, the application of EIT in minimally invasive surgery (MIS) has been hindered by a lack of specialized electrode probes. Existing designs often compromise between invasiveness and spatial sensitivity: probes small enough for MIS often fail to provide detailed imaging, while those offering greater sensitivity are impractically large for use through a surgical trocar. Addressing this challenge, our study presents a breakthrough in EIT probe design. The open electrode probe we have developed features a line of 16 electrodes, thoughtfully arrayed to balance the spatial demands of MIS with the need for precise imaging. Employing an advanced EIT reconstruction algorithm, our probe not only captures images that reflect the electrical characteristics of the tissues but also ensures the homogeneity of the test material is accurately represented. The versatility of our probe is demonstrated by its capacity to generate high-resolution images of subsurface anatomical structures, a feature particularly valuable during MIS where direct visual access is limited. Surgeons can rely on intraoperative EIT imaging to inform their navigation of complex anatomical landscapes, enhancing both the safety and efficacy of their procedures. Through rigorous experimental validation using ex vivo tissue phantoms, we have established the probe’s proficiency. The experiments confirmed the system’s high sensitivity and precision, particularly in the critical tasks of subsurface tissue detection and surgical margin delineation. These capabilities manifest the potential of our probe to revolutionize the field of surgical imaging, providing a previously unattainable level of detail and assurance in MIS procedures.

Funder

the Natural Science Foundation of Guangdong Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3