Acceleration of the frequency-shift demodulation in phase-sensitive OTDR

Author:

Pu Zhengyu,He HaijunORCID,Zhou Yin,Jiang Lin,Pan Wei,Yan Lianshan

Abstract

Abstract The frequency-shift demodulation is a primary demodulation method in phase-sensitive optical time domain reflectometry (Φ-OTDR) with intrinsic resistance to interference fading. So far, the least mean squares (LMS) estimation method has the optimal demodulation accuracy and robustness. However, it takes much processing time due to the step-by-step sliding operation. In this work, we propose a fast LMS estimation method based on cross-correlation calculation to accelerate the demodulation while maintaining accuracy. Experiments are performed along a 9 km sensing fiber with a 4 m spatial resolution. The performance of the fast LMS, LMS, and cross-correlation methods are compared by using the same parameters. Compared with the LMS method, the fast LMS achieves a 12-time improvement in processing speed while remaining the same demodulation accuracy. Although the proposed fast LMS method takes slightly more time than the cross-correlation method (1.6 times), it improves the demodulation accuracy ∼6 dB for the vibration signal and ∼2.1 dB for the overall demodulation accuracy.

Funder

Sichuan Science and Technology Program

Chengdu Municipal Science and Technology Program

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3