Integrated sensing and communication in an optical fibre

Author:

He Haijun,Jiang Lin,Pan Yan,Yi Anlin,Zou XihuaORCID,Pan Wei,Willner Alan E.ORCID,Fan XinyuORCID,He ZuyuanORCID,Yan Lianshan

Abstract

AbstractThe integration of high-speed optical communication and distributed sensing could bring intelligent functionalities to ubiquitous optical fibre networks, such as urban structure imaging, ocean seismic detection, and safety monitoring of underground embedded pipelines. This work demonstrates a scheme of integrated sensing and communication in an optical fibre (ISAC-OF) using the same wavelength channel for simultaneous data transmission and distributed vibration sensing. The scheme not only extends the intelligent functionality for optical fibre communication system, but also improves its transmission performance. A periodic linear frequency modulation (LFM) light is generated to act as the optical carrier and sensing probe in PAM4 signal transmission and phase-sensitive optical time-domain reflectometry (Φ-OTDR), respectively. After a 24.5 km fibre transmission, the forward PAM4 signal and the carrier-correspondence Rayleigh backscattering signal are detected and demodulated. Experimental results show that the integrated solution achieves better transmission performance (~1.3 dB improvement) and a larger launching power (7 dB enhancement) at a 56 Gbit/s bit rate compared to a conventional PAM4 signal transmission. Meanwhile, a 4 m spatial resolution, 4.32-/$$\sqrt {Hz}$$ H z strain resolution, and over 21 kHz frequency response for the vibration sensing are obtained. The proposed solution offers a new path to further explore the potential of existing or future fibre-optic networks by the convergence of data transmission and status sensing. In addition, such a scheme of using shared spectrum in communication and distributed optical fibre sensing may be used to measure non-linear parameters in coherent optical communications, offering possible benefits for data transmission.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Phase Demodulation Method and Simulation for Fiber-Optic Distributed Acoustic Sensor;Computational and Experimental Simulations in Engineering;2023-12-05

2. Awakening Intrinsic Distributed Acoustic Sensing in Digital Subcarrier Multiplexing Coherent Transmission Systems;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

3. Linear Fitting-Based Residual Frequency Offset Compensation in Simultaneous Transmitting and Sensing System Using Coherent Transponders;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

4. Acceleration of the frequency-shift demodulation in phase-sensitive OTDR;Measurement Science and Technology;2023-11-01

5. High resolution seafloor thermometry for internal wave and upwelling monitoring using Distributed Acoustic Sensing;Scientific Reports;2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3