High temperature W-band complex permittivity measurements of thermally cycled ceramic-metal composites: AlN:Mo with 0.25 to 4.0 vol% Mo from 25 °C to 1000 °C in air

Author:

Cohick Zane WORCID,Schaub Samuel CORCID,Hoff Brad WORCID,Dynys Frederick W,Baros Anthony E,Telmer MaxwellORCID,Orozco Haylie,Grudt Rachael O,Hayden Steven C,Rittersdorf Ian MORCID,Savrun Ender

Abstract

Abstract An apparatus for measuring the W-band (75–110 GHz) complex permittivity of dielectrics at 1000 °C was developed. This apparatus allows for measurements at approximately twice the temperature of previously published high temperature free-space measurement systems while maintaining similar precision. Challenges were addressed related to high temperature measurements, including temperature uniformity, the accuracy of temperature measurements, and preventing temperature related changes to mm-wave measurement systems. The details of complex permittivity extraction from the measured S-parameters are discussed. Sources of error related to permittivity measurement and mathematical models were identified and are discussed in detail herein. Thermally-cycled, mm-wave absorbing, aluminum nitride ceramic composites containing varying levels of molybdenum additives were measured over the range of 25 °C–1000 °C. These measurements were compared to the same composites before thermal cycling. It was found that ceramic composites are largely stable after thermal cycling in terms of dielectric properties despite the presence of visible surface modifications.

Funder

Operational Energy Capability Improvement Fund

Air Force Office of Scientific Research

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference19 articles.

1. Millimeter wave interactions with high temperature materials and their application to power beaming;Hoff,2018

2. Composite ceramics for power beaming;Jawdat,2017

3. Criteria for comparing power beaming demonstrations;Jaffe

4. Broadband microwave and W-band characterization of BeO-SiC and AIN-based lossy dielectric composites for vacuum electronics;Calame,2006

5. Variable temperature measurements of the dielectric properties of lossy materials in W-band;Garven,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3