Anisotropic complex permittivity measurement using a microstrip air line

Author:

Li Qunying,Wu ChangyingORCID

Abstract

Abstract A microstrip air line system for measuring the complex permittivity of anisotropic materials in the band from 0.3 to 1 GHz is proposed. The multireflect-thru method is used to calibrate the measurement system in the whole band with a single microstrip air line without suffering from the limited space resolution of time-gating technique. During the measurement, the material under test (MUT) is placed both above and below the strip. With this deployment, the TEM mode propagates along the microstrip in the MUT. Therefore, it is possible to measure the anisotropic permittivity. Since a small portion of the electric field is parallel to the ground plane around two edges of the strip, the extracted property is not purely along one direction. To obtain higher accuracy, with the help of linear combination, the properties along two directions are disentangled by two measurements. For validation of the method, an isotropic material and an anisotropic material in the microstrip air line were simulated and their permittivities were extracted from simulation results. An anisotropic material polytetrafluoroethylene (PTFE) and two anisotropic materials, FR4 and honeycomb absorber, were measured. The results of PTFE show that there is a maximum relative error of 1.4% and 2.5% for the permittivity extracted from simulation and measurement, respectively. The validity and the accuracy of the system for measuring anisotropic materials are verified by the simulation and measurement results.

Funder

Aeronautical Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3