In-motion initial alignment method for a laser Doppler velocimeter-aided strapdown inertial navigation system based on an adaptive unscented quaternion H-infinite filter

Author:

Xiang Zhiyi,Wang Qi,Huang Rong,Xi Chongbin,Nie Xiaoming,Zhou JianORCID

Abstract

Abstract With its advantages of high velocity measurement accuracy and fast dynamic response, the laser Doppler velocimeter (LDVs) is expected to replace the odometer (OD) in combination with a strapdown inertial navigation system (SINS) to give a higher-precision integrated navigation system. Since a LDV has higher velocity measurement accuracy and data update frequency than an OD and Doppler velocity log, a LDV is used for the first time in this paper to aid a SINS in in-motion alignment. Considering that some approximation is used in the alignment model, the uncertainty noise of the sensors during the motion process and the unknown noise parameters during the filter process, an adaptive unscented quaternion H-infinite estimator (AUSQUHE) is proposed. The proposed AUSQUHE method has high robustness since it combines the advantages of an unscented quaternion estimator and H-infinite filter. The adaptive threshold of the H-infinite filter and the adaptive measurement noise covariance matrix are introduced to make the filter adapt to the changing environment and accelerate the convergence of errors. The performance of the proposed method is verified by a vehicle field test with a normal LDV signal and a vehicle test with the LDV signal disturbed by noise. The results show that the proposed method has higher alignment accuracy, faster convergence speed and stronger robustness than the four other compared methods.

Funder

Major basic autonomous research project of College of Advanced Interdisciplinary Studies, National University of Defense Technology

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3