A combination of residual and long–short-term memory networks for bearing fault diagnosis based on time-series model analysis

Author:

Wang YoumingORCID,Cheng LinORCID

Abstract

Abstract Data-driven methods have been considered as an effective tool for detecting the nonlinear and complex changes of time-series data and extracting early fault features from bearing vibration measurements in industrial applications. Due to the lack of a feature extraction ability of the residual network, which is an existing typical intelligent fault diagnosis deep model of bearing vibration signal, it is difficult to capture the long-term dependence between the time-series data. To overcome this problem, we propose a combination of residual and long–short-term memory networks (Resnet-LSTM) and develop a fused time-series model. The two-dimensional signal of bearing vibration is input into the residual network and the local feature is extracted by embedding a residual layer. In addition, the bearing feature information is loaded into a long-term memory unit and the forgetting mechanism is introduced to extract the global features of the time-series data. The advantage of the proposed method is that it takes full advantage of all the local deep features and global time-series features from the bearing vibration signal. This approach enables us to learn sequential features in different interval lengths and capture the local sequence features of the data information flow, which can improve the fault diagnosis accuracy of existing methods. Experimental results demonstrate that the proposed method outperforms other common methods in single and compound fault diagnoses of bearings.

Funder

the Key Research and Development Program of Shaanxi Province of China

the graduate student innovation fund of Xi’an University of Post and Telecommunications

National Natural Science Foundation of China

Open Projects of State Key Laboratory for Strength and Vibration of Mechanical Structures

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3