Drill tools sticking prediction based on adaptive long short-term memory

Author:

Wu HonglinORCID,Wang Zhongbin,Si Lei,Zou Xiaoyu

Abstract

Abstract As one of the most severe disasters in deep coal mining, rockburst can be prevented through drill-hole pressure relief. However, the coal mine is characterized by high crustal stress and changeable mechanical properties of surrounding rock, which will cause drill rod deflection phenomenon, then lead to rod-deflection sticking accidents. This paper proposes a prediction method based on adaptive long short-term memory (ALSTM) for rod-deflection sticking accidents to improve drilling efficiency and reduce sticking accidents. Firstly, the sticking data is collected through the intelligent drilling condition simulation experimental platform, and then the sticking features are extracted based on the sticking data. Secondly, the sticking factor is constructed, and the sticking critical line is set. Thirdly, the good-point set and the proposed random perturbation algorithm are employed to improve the spotted hyena optimizer (SHO) to obtain the improved SHO (ISHO). Finally, we use the ISHO to optimize the hyperparameters of the long short-term memory and then establish the sticking prediction model based on ALSTM. The experimental results show that the proposed prediction model meets the demands for sticking prediction very well.

Funder

National Key Research and Development Program of China

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3