Measurement of layer thicknesses with an improved optimization method for depolarizing Mueller matrices

Author:

Grunewald TobiasORCID,Wurm Matthias,Teichert Sven,Bodermann Bernd,Reck Johanna,Richter Uwe

Abstract

Abstract There are some commonly-used optimization techniques for the analysis of measured data in spectroscopic Mueller matrix ellipsometry (MME) used, for example, to calculate the layer thicknesses of samples under test. Concentrating on the metrological aspects of MME, we identified a non-optimal treatment of depolarization in all these techniques. We therefore recently developed an improved optimization method to adequately take depolarization in MME into account. In a further step, we also included statistical measurement noise and derived a likelihood function, which enabled us to apply both the maximum likelihood method and Bayesian statistics as well as the Bayesian information criterion for data evaluation. In this paper we concentrate on the application of this new method to measurements of SiO2-layer thicknesses on silicon. With a state-of-the-art SENTECH SENresearch 4.0 Mueller ellipsometer, we measured standard samples of different SiO2-layer thicknesses, whose calibrated thicknesses were between about 6 nm and 1000 nm. The MME results were compared to the calibration data. For all samples, an SiO2-SiO double-layer model turned out to be optimal. The measured total oxide layer thicknesses matched excellently with the calibration values, within the estimated range of uncertainties. All the results are presented here. This is the first comparison with traceable reference measurements demonstrating the validity of our novel MME analysis method.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3