Measurement method of a microspring-supported force plate with an external laser displacement meter

Author:

Sugimoto Takumi,Kawasaki Yuta,Toda Hirofumi,Takahashi HidetoshiORCID

Abstract

Abstract Ground reaction force (GRF) is a significant factor for the evaluation of animal locomotion. Recently, micro force plates have been implemented as a GRF measurement method for tiny insects. Previous micro force plates were highly sensitive, but fragile and laborious to fabricate, because of the use of strain-sensing elements. Here, we applied high-resolution 3D printing and a noncontact displacement meter to a micro force plate for a fruit fly. 3D printing is suitable for easier, reproducible, and complex three-dimensional fabrication so that a force plate structure, which consists of a plate and four supporting 3D microsprings, is developed as an integrated unit. By detecting the displacement of the plate centre externally, when a fruit fly lands on the plate surface, the vertical GRF of the whole device is calculated via the spring constant. The force plate is sufficiently tough due to the supporting 3D microsprings. The spring constant of the microspring is designed to be approximately 5.98 N m−1, which enables a high-resolution external laser displacement meter to realize a force resolution of less than 1/50 of the body weight of a fruit fly. Providing that the four springs have the same spring constant and the displacement meter aligns at the plate centre, in principle, there is no positional error when converting from displacement to force. However, fabrication error does lead to spring constant differences. Here, we theoretically and experimentally determined the measurement point of the displacement sensor where the positional error caused by the difference in the spring constant of the four microsprings is compensated for. It was confirmed in the experiment that the calibration process improved the position error to be within ±1.5%. Finally, we demonstrated the GRF measurement of a fruit fly. The average GRF was 6.5 μN, which was equal to the weight of a fruit fly. Our proposed device can help evaluate the biomechanics of tiny insects.

Funder

Japan Society for the Promotion of Science

Shimadzu Science Foundation

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3