Thin Glass Micro Force Plate Supported by Planar Spiral Springs for Measuring Minute Forces

Author:

Kiriyama Taisei1,Shimazaki Kenichiro1,Nakashima Rihachiro1,Takahashi Hidetoshi1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan

Abstract

Microforce plates are indispensable tools for quantitatively evaluating the behavior of small objects such as tiny insects or microdroplets. The two main measurement principles for microforce plates are: the formation of strain gauges on the beam that supports the plate and the measurement of the deformation of the plate using an external displacement meter. The latter method is characterized by its ease of fabrication and durability as strain concentration is not required. To enhance the sensitivity of the latter type of force plates with a planar structure, thinner plates are generally desired. However, brittle material force plates that are both thin and large and can be fabricated easily have not yet been developed. In this study, a force plate consisting of a thin glass plate with a planar spiral spring structure and a laser displacement meter placed under the plate center is proposed. The plate deforms downward when a force is exerted vertically on its surface, resulting in the determination of the applied force using Hooke’s law. The force plate structure is easily fabricated by laser processing combined with the microelectromechanical system (MEMS) process. The fabricated force plate has a radius and thickness of 10 mm and 25 µm, respectively, with four supporting spiral beams of sub-millimeter width. A fabricated force plate featuring a sub-N/m spring constant achieves a resolution of approximately 0.01 µN.

Funder

JSPS KAKENHI

the Shimadzu Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3