Cryogenic flow rate measurement with a laser Doppler velocimetry standard

Author:

Maury RORCID,Strzelecki A,Auclercq C,Lehot Y,Loubat S,Chevalier J,Ben Rayana F,Olsen Å A FORCID,Chupin G

Abstract

Abstract A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame–Exadebit is involved in various research and development programs. Within the framework of the first (2010–2013) and second (2014–2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame–Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame–Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

Funder

EMRP

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference14 articles.

1. Metrological support for LNG custody transfer and transport fuel applications;Kerkhof,2014

2. Pre-studying of laser Doppler velocimetry for LNG flow measurement;Strzelecki,2013

3. A primary standard for the volume flow rate of natural gas under high pressure based on laser Doppler velocimetry;Mickan;Metrologia,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3