Pothole Classification Model Using Edge Detection in Road Image

Author:

Baek Ji-WonORCID,Chung KyungyongORCID

Abstract

Since the image related to road damage includes objects such as potholes, cracks, shadows, and lanes, there is a problem that it is difficult to detect a specific object. In this paper, we propose a pothole classification model using edge detection in road image. The proposed method converts RGB (red green and blue) image data, including potholes and other objects, to gray-scale to reduce the amount of computation. It detects all objects except potholes using an object detection algorithm. The detected object is removed, and a pixel value of 255 is assigned to process it as a background. In addition, to extract the characteristics of a pothole, the contour of the pothole is extracted through edge detection. Finally, potholes are detected and classified based by the (you only look once) YOLO algorithm. The performance evaluation evaluates the distortion rate and restoration rate of the image, and the validity of the model and accuracy of the classification. The result of the evaluation shows that the mean square error (MSE) of the distortion rate and restoration rate of the proposed method has errors of 0.2–0.44. The peak signal to noise ratio (PSNR) is evaluated as 50 db or higher. The structural similarity index map (SSIM) is evaluated as 0.71–0.82. In addition, the result of the pothole classification shows that the area under curve (AUC) is evaluated as 0.9.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring;Scientific Reports;2024-08-26

2. CBAM-Optimized Automatic Segmentation and Reconstruction System for Monocular Images With Asphalt Pavement Potholes;IEEE Transactions on Intelligent Transportation Systems;2024-08

3. A Deep Learning Framework for Segmentation of Road Defects Using ResUNet-a;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

4. A Self-Supervised Learning Approach to Road Anomaly Detection Using Masked Autoencoders;International Conference on Transportation and Development 2024;2024-06-13

5. Detection of Real Time Pothole System using Edge Detection;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3