Focused laser differential interferometer response to shock waves

Author:

Lawson J MORCID,Austin J M

Abstract

Abstract The focused laser differential interferometer (FLDI) can be used to measure rapid density fluctuations non-intrusively in high-speed flow applications. Being a non-imaging shearing interferometer, FLDI response can be accurately modeled using a paraxial ray-tracing scheme. We present the details of a new numerical implementation of this scheme, capable of accepting flow-field input from analytical models, computational fluid dynamics (CFD) results, and experimental data. This implementation has previously been validated for static (laminar jet) and dynamic (ultrasound-generated) changes in index of refraction by Lawson et al. In this work, we examine the FLDI response to shock waves propagating at up to Mach 10, in Caltech’s hypervelocity expansion tube. While the timescale and approximate form of the signal can be recovered using a simple inviscid, planar shock model, it is found that the inclusion of viscous shock effects allows an accurate simulation of both the magnitude and detailed shape of the experimental response. This is a further analytical validation of the FLDI model that extends beyond the results of the existing dynamic validation case. The model implementation is then coupled to a CFD code, and predictions reproduce experimental FLDI response to a complex shock-dominated flow-field.

Funder

Office of Naval Research

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference28 articles.

1. Laser-differential interferometer applications in gas dynamics;Smeets,1973

2. Free-stream density perturbations in a reflected-shock tunnel;Parziale;Exp. Fluids,2014

3. Observations of hypervelocity boundary-layer instability;Parziale;J. Fluid Mech.,2015

4. Turbulence measurements in high-speed wind tunnels using focusing laser differential interferometry;Fulghum,2014

5. The focusing laser differential interferometer, an instrument for localized turbulence measurements in refractive flows;Settles;J Fluids Eng.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3