Abstract
Abstract
Recently, most cross-domain fault diagnosis methods focus on single source domain adaptation. However, it is usually possible to obtain multiple labeled source domains in real industrial scenarios. The question of how to use multiple source domains to extract common domain-invariant features and obtain satisfactory diagnosis results is a difficult one. This paper proposes a novel adversarial domain adaptation with a classifier alignment method (ADACL) to address the issue of multiple source domain adaptation. The main elements of ADACL consist of a universal feature extractor, multiple classifiers and a domain discriminator. The parameters of the main elements are simultaneously updated via a cross-entropy loss, a domain distribution alignment loss and a domain classifier alignment loss. Under the framework of multiple loss cooperative learning, not only is the distribution discrepancy among all domains minimized, but so is the prediction discrepancy of target domain data among all classifiers. Two experimental cases on two source domains and three source domains verify that the ADACL can remarkably enhance the cross-domain diagnostic performance under diverse operating conditions. In addition, the diagnostic performance of different methods is extensively evaluated under noisy environments with a different signal-to-noise ratio.
Funder
Fundamental Research Funds for the Central Universities
National Key Research and Development Program of China
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献