Abstract
Abstract
When calibrating inter-system biases (ISB), especially the fractional part of inter-system phase biases (F-ISPB), a multi-GNSS inter-system model can effectively improve positioning performance under a complex environment. Usually, the F-ISPB is estimated after fixing the intra-system ambiguities. However, this approach seems inapplicable when it is difficult to obtain intra-system ambiguities under a complex environment. A multi-dimensional particle filter (PF)-based F-ISPB estimate method has been proposed to overcome the problem. Nevertheless, the multi-dimensional PF involves a great quantity of computations. In this contribution, four state optimal estimate-based F-ISPB handling schemes are proposed: step-by-step PF, step-by-step particle swarm optimization (PSO), multi-dimensional PF, and multi-dimensional PSO-based F-ISPB estimate methods. Two baselines were selected to investigate the F-ISPB estimate performance in both open and complex environments. The results show that due to the potential of the wrong F-ISPB to bring about the maximum ratio for a long time during the initial stage, the step-by-step PF method can achieve better performance than step-by-step PSO. Besides, the two-dimensional results show that all of the F-ISPB still cannot be extracted under complex environments by multi-dimensional PSO. Furthermore, compared with step-by-step PF, the multi-dimensional PF method costs too much to obtain the right value. For example, in the two-dimensional case, the step-by-step PF searches 200 times for each epoch, while the two-dimensional PF requires 40 000 times for each epoch, so it is difficult for receivers to provide hardware support for this method. In addition, the step-by-step PF can obtain the right F-ISPB with about 100 epochs no matter what scenario. Thus, under challenging observation scenarios, a step-by-step PF method is recommended to extract the F-ISPB.
Funder
National Natural Science Foundation of China
The Fundamental Research Funds for the Central Universities
the Research and Innovation Program for Graduate Students in Jiangsu Province of China
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献