Attitude Determination with GPS L1/Galileo E1 Observations from Common-Clock Receiver: A Comparison of Four Different Models

Author:

Wu MingkuiORCID,Li Jiahang,Luo Shuai,Liu Wanke

Abstract

The development of the commercial multi global navigation satellite system (GNSS) dual (multi)-antenna common-clock receiver that uses time-synchronization technology has brought new opportunities for high-precision GNSS-based attitude determination. In this article, for the first time, we present a performance comparison of global positioning system (GPS) L1/Galileo navigation satellite system (Galileo) E1 attitude determination with a common-clock receiver using four different models, i.e., the loosely combined single-differenced (SD-LC) model, the tightly combined single-differenced (SD-TC) model, the loosely combined double-differenced (DD-LC) model, and the tightly combined double-differenced (DD-TC) model. We first introduce the SD-LC, SD-TC, DD-LC, and DD-TC relative positioning models with GPS L1/Galileo E1 observations from a common-clock receiver. Then, we present a performance comparison of the four models in both single-epoch and multi-epoch modes using static data collected with a Trimble BD992 common-clock receiver in terms of the ambiguity dilution of precision (ADOP), the ambiguity resolution (AR) success and failure rates, and the positioning and attitude determination accuracy. In the case of the single-epoch mode, the experimental results revealed that the results of the single-differenced (SD) models were identical to those of double-differenced (DD) models, i.e., the results of SD-LC and SD-TC models were identical to DD-LC and DD-TC models, respectively. Moreover, compared with the loosely combined model (SD-LC/DD-LC), the tightly combined model (SD-TC/DD-TC) delivered a much higher AR success rate and a lower AR failure rate, especially under a high elevation cutoff angle. The AR success rate increased by approximately 35.1% under a 40° elevation cutoff angle, while the AR failure rate decreased by approximately 4.3%. In the case of the multi-epoch mode, the experimental results confirmed the advantages of the tightly combined model over the loosely combined model as well as the SD model over the DD model. Compared with the DD-LC and SD-LC models, the AR success rates of the DD-TC and SD-TC models were improved by approximately 16.7% and 0.6% under a 45° elevation cutoff angle, respectively. The AR failure rates were reduced by approximately 12.4% and 0.3%, respectively. Moreover, compared with the DD-LC and DD-TC models, the AR success rates of the SD-LC and SD-TC models under a 45° elevation cutoff angle were improved by approximately 24.0% and 7.9%, respectively, and the AR failure rates were reduced by approximately 19.9% and 7.8%, respectively. Meanwhile, compared with the DD model, the SD model delivered comparable yaw accuracy and remarkably better pitch accuracy. The pitch accuracy was improved by approximately 65.2–75.0%.

Funder

Hubei Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3