Degradation trend feature generation improved rotating machines RUL prognosis method with limited run-to-failure data

Author:

Zhang KaiORCID,Liu Yantao,Zou YishengORCID,Ding Kun,Liu Yongzhi,Zheng Qing,Ding Guofu

Abstract

Abstract The success of rotating machines’ data-driven remaining useful life (RUL) prognosis approaches depends heavily on the abundance of entire life cycle data. However, it is not easy to obtain sufficient run-to-failure data in industrial practice. Data generation technology is a promising solution for enriching data but fails to address the intrinsic complexity of nonlinear stage degradation and the time correlation of long-term data. This research proposes an RUL prognosis approach improved by the degradation trend feature generation variational autoencoder. First, this study develops a framework combining degradation trend generation features to resolve the issue of capturing the elements of time distribution for run-to-failure data. Second, a generation variational autoencoder network with a tendency block is proposed to create high-quality time series data correlation features. Third, original and created degradation trend features are subjected to deep adaptive fusion and health indicator extraction. A bi-directional long short-term memory network is employed to predict the degradation trend and obtain the RUL prognosis. Finally, the proposed approach’s feasibility is confirmed by cross-validation experiments on a bearing dataset, which reduces the prediction error by 22.309%.

Funder

National Key Research and Development Project

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3