Prescriptive maintenance for complex products with digital twin considering production planning and resource constraints

Author:

Mao HaoyangORCID,Liu ZhenyuORCID,Qiu Chan,Huang Yu,Tan Jianrong

Abstract

Abstract Maintenance is a critical aspect of complex products through entire life cycle, often requiring coordination of production planning and available resources, while previous studies appear to have rarely addressed. With this in mind, this paper presents a prescriptive maintenance framework based on digital twins (DTs) for reducing operational risk and maintenance costs of complex equipment clusters. Virtual entities are firstly constructed for each single asset in multiple dimensions, which use real-time or historical sensing data collected from the physical entities to predict the corresponding remaining useful life (RUL). Then such RUL information is incorporated into a stochastic programming model with chance constraints to enable dynamic decision making. In particular, a risk-based optimization model is formulated to take full account of the physical distances between facilities and production gaps. Further, a dual-sense pyramidal transformer model is proposed to sense important details of data in both time and space while capturing temporal dependencies at different scales. Compared to existing data-driven approaches, the proposed DT-based alternative achieves dynamic real-time interaction between physical and virtual units driven by both models and data, while virtual verification based on high-fidelity models ensures high reliability of maintenance decisions, which has also been validated in an aero-engine maintenance case study.

Funder

Key Research and Development Program of Zhejiang Province

National Natural Science Foundation of China

Major Project of Science and Technology Innovation 2030

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3