Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images

Author:

Ginio Noam,Liberzon DanORCID,Lindenbaum Michael,Fishbain Barak

Abstract

Abstract Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement techniques have been developed over the years. None of these techniques, however, are universally applicable across various ocean and laboratory conditions and none provide near-real-time data. We utilized the latest advances in polarimetric imaging to develop a new remote sensing method based on machine learning methodology and polarimetric reflection measurements for inferring surface waves elevation and slope. The method utilizes a newly available, inexpensive polarimetric camera providing images of the water surface in a high spatio-temporal resolution at several linear polarization angles. Algorithms based on artificial neural networks ( ANN s) are then trained to obtain high-resolution reconstructions of the water surface slope state from those images. The ANN s are trained on laboratory-collected supervised datasets of prescribed mechanically generated monochromatic wave trains and tested on a stochastic wave field of JONSWAP spectral shape. The proposed method, based on inferring the surface slope from polarimetric images, provides a dense estimate of the water surface. The results of this study pave the way for the development of accurate and cost-effective near-real-time remote sensing tools for both laboratory and open sea wave measurements.

Funder

Israeli Ministry of Energy

Israeli Port Company

Israeli Ministry of Environmental Protection

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference24 articles.

1. Theory, instruments and methods of analysis;Harald,2005

2. Wind generated rogue waves in an annular wave flume;Toffoli;Phys. Rev. Lett.,2017

3. Analysis of the directional wave spectrum from field data;Hashimoto;Adv. Coast. Ocean Eng.,1997

4. Nonstationary analysis of the directional properties of propagating waves;Donelan;J. Phys. Oceanogr.,1996

5. Non-intrusive wave field measurement;Bourdier,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3